Moving Forward with Genomics

Brown Bagger NBCEC

Jack Ward American Hereford Association October 31, 2012

Utilizing Genomic Information

- Training and Validation
- Change from Microsatellites to SNP
- Implementation
- Future

Training and Validation

- Nearly 1200 US Hereford bulls have 50K genotypes and these have been used to train and validate a Hereford Specific genomics panel.
- These bulls were done through various projects including US-MARC 2000 bull project, Weight-Trait Project, Genetic Abnormality research and American Hereford Association (AHA) genotyping of high accuracy bulls and young sire candidates.

Training and Validation

AHA Trait	EPD Acc.	Correlation	New Acc.	Progeny	
CE	.12	.40	.18	7.4	
BW	.12	.45	.20	2.1	
ww	.12	.32	.16	2.2	
YW	.12	.32	.16	1.2	
Milk	.12	.26	.14	2.8	
MCE	.12	.18	.13	1.3	
Fat	.12	.45	.20	3.1	
REA	.12	.42	.18	3.1	
MARB	.12	.33	.15	1.8	

[•] June 2012 Saatchi, Garrick

How Good can it Be?

EPD Acc.	MBV Correlation	Trait Heritability	Enhanced EPD Acc.	Effective Progeny	
.12	.10	.30	.12	.1	
.12	.20	.30	.13	.5	
.12	.30	.30	.15	1.2	
.12	.40	.30	.18	2.3	
.12	.50	.30	.22	4.1	
.12	.60	.30	.27	6.9	
.12	.70	.30	.33	11.8	
.12	.80	.30	.43	21.9	
.12	.90	.30	.58	52.6	

International Hereford Comparisons

(Pan American Evaluation)

Trait	US Prediction	Raw Corre. 99 UR Bulls	Raw Corre. 75 CA Bulls	Raw Corre. 59 Unrelated Arg Bulls	Raw Corre. 41 US Like Arg Bulls	
BW	.43	.22	.40	.15	.24	
ww	.32	.13	.07	35	.23	
YW	.30	.03	.12	27	.32	
Milk	.22	.23	.09	.15	03	
Fat	.40	.22	.39	.02	.10	
REA	.36	.01	01	11	.18	
Marbling	.27	.25	.29	.17	.35	

Next Step for the AHA

- Changed labs and technology from Maxxam Analytics to GeneSeek. The platform changed from Microsatellites to SNP's.
- There are four options to AHA membership
 - -Parentage and abnormality testing-\$30
 - -H/P test- \$48
 - -50K Genotype for GE-EPD- \$85
 - -Parentage, Abnormality test, GE-EPD-\$100

Implementation

Utilizing Genomic Information

- Produce only an EPD and using MBV as correlated trait.
- Only compliant Performance Breeders will get update GE-EPD
- Pedigree + MBV + Phenotype
- Currently, does not go up and down pedigree.
 Generated outside the genetic analysis
- Because the AHA has access to the Pedigree,
 Genotypes and Phenotypes, we can recalculate
 MBV's at anytime.

Breeder results sheet

Results for Case No. AHA43180206-03 Date Sent: 08/30/12 Date Tested

Parentage Request Type: Not Tested Panel Type: SNP Panel 09/18/12

Name Registration Number Result

Sire: CL 1 DOMINO 862U 42897556 Not Tested

Dam: 4V MS H LG 8J DOMINO U33 42898189 Not Tested

COLOR DILUTOR IDIOPATHIC EPILEPSY HYPOTRICHOSIS

Not Tested Not Tested Not Tested

GE-EPD 09/18/12

1	ested	CE EPD	BW EPD	WW EPD	YW EPD	Milk EPD	M&G EPD	MCE EPD	MCW EPD	Scrotal EPD	FAT EPD	REA EPD	MARB EPD	BMI \$	CEZ \$	BII \$	CHB \$
		Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc				
	SAHAY	4.5	1.1	38	66	21	40	2.6	64	0.7	-0.029	0.23	0.28	21	19	18	25
	GE-EPD X	.06	.39	.31	.32	.10		.05	.20	.27	.23	.24	.20				
	EPDs Pre-GE Data:	4.5	0.4	41	63	20	41	2.6	63	0.6	-0.007	0.24	0.32	21	19	18	26
		.06	.38	.29	.31	.09		.05	.20	.26	.20	.20	.18				

How to identify Hereford animals with GE-EPD

• These animals are identified on the web at www.Hereford.org and under the EPD Search site. You can "Sort by" and find all animals with GE-EPD. Or if you do a search and on an animals detail screen under the EPD you will find logo which means the EPD are enhanced.

Future of Genomics at AHA

- Continue to Collaborate with Scientists, other countries and all research entities.
- Continue to build populations of <u>50K</u> genotypes. Additional 1000 sires by year end.
- Continue to collect phenotypes on Economically Relevant Traits (ERT's) that are hard to measure like Feed Intake and Fertility (Whole Herd Reporting) and Health.
- Begin to Sequence Legacy Sires. (8 bulls in 2012) and imputation

National Program for Genetic Improvement of Feed Efficiency in Beef Cattle

Beef Cattle Evaluation

Consortium

Summary

- Genomic predictions do work (US Dairy, poultry, swine industries and Angus, Hereford, Simmental, Red Angus)
- It is in its infancy
- Predictions work well within populations that are closely related.
- Phenotypes will still be important to the evolution of Genomics.
- It is exciting.

