Pooling DNA to Investigate Cattle Infertility #### Tara McDaneld USDA/ARS Meat Animal Research Center Clay Center, NE, 68933, USA ### Background - * Reproductive efficiency - * Lifetime production of the cow - * Important element of cow-calf component of cattle industry - * Female becomes a liability in the herd with no calf for producer to market #### Objective * Identify regions of the genome associated with reproductive efficiency in beef cattle # Challenges when evaluating reproductive traits - * Low heritability (0.10-0.40) - * Complex trait - * Influenced by multiple genes - Creates difficulty when identifying genomic regions # Tools for overcoming challenges **Pooling** 770 K SNP chip ### Steps in creating DNA pools - * Extract DNA - * Tissue - * Blood - * FTA cards - * Determine quality and quantity - * Pool equal amount of each individual - Properly mix pool to ensure consistency of individuals in pool Each pool run in duplicate on 770 SNP chip ### Cattle populations - * USMARC population - * Genetically diverse populations - * British and Continental breeds - * 1000 females of low reproductive efficiency - * 1000 females of high reproductive efficiency - * 10 pools of 100 individuals for each phenotype ### Cattle populations - * Central Florida population - * Bos indicus influence - * Brangus - * Simbrah - * Braford - * Reproductive records from 2 breeding seasons - * Open/open - * Open/pregnant - * Pregnant/open - * Pregnant/pregnant #### Additional populations - * Western Nebraska population - * Records from 2007 born heifers - * Records for three consecutive breeding seasons - Open females are culled after first failure - * Milt Thomas at NMSU - * Records from 7 small populations #### MARC population - * Identified multiple regions across genome associated with reproductive efficiency - * BTA 1, 9, 17 - * Chromosome Y? ## Central Florida population * Identified multiple regions across genome - * Identified multiple regions across genome associated with reproductive efficiency - * BTA 5, 8, 9, 14, 17, and 20 - * Chromosome Y #### Y SNP in males and females? * Only see Y SNP in open and low reproductive pools #### Western Nebraska population - * Identified multiple regions across genome associated with reproductive efficiency - * BTA 1, 17, Y ### Additional populations - Identified multiple regions across genome associated with reproductive efficiency - * BTA 5, 11, and Y #### SNP across the Y chromosome # Why do we see Y SNP in the open females? - * Can we determine which females that possess the Y SNP? - * Evaluate individual females that make up open pool - * Are all the open females contributing to the Y SNP? ### Y chromosome in the pools - * Evaluate individuals of pools - * PCR test specific to Y chromosome - * PCR test is used to sex embryos - Only positive for males | % pool positive for sexing test | | |---------------------------------|-----| | Brangus | 21% | | Simbrah | 27% | | Braford | 29% | | USMARC | 21% | ### Y SNP in pools - * Evaluate specific Y SNP on 770 K SNP chip - * Developed PCR tests for Y SNP that are significant - * We see different patterns in females that are positive for sexing PCR test (3-10% open females positive) - * Different fragments of Y chromosome? # What is causing the Y SNP in females? - * Undetected freemartins? - * Females commonly calve on pasture - May miss calves that are born twins - Reproductive tracts are checked in Central Florida population at prebreeding check - * Twins are recorded at USMARC ### Freemartins in pools? - * Use PCR to test for genomic regions of Y in individuals that made up pool - * Sexing PCR test ### Freemartins in pools? - * Use PCR to test for Y SNP that are significant - * All females that are positive for sexing primers are also positive for Y-SNP tests - * Are freemartins the only cause of the Y? | % + | % + | |--------|--------| | Sexing | Y-SNP | | primer | primer | | test | test | | 96% | 96% | #### Conclusions - * Identified regions of the genome associated with reproductive efficiency - * Able to replicate these results in additional populations - * Identified Y SNP in individuals of open pools that may contribute to low reproductive efficiency (approx. 3-29% of the open population) #### Current status - * Evaluate Y-chromosome anomaly further - * Fine map regions on autosomes identified in current project - * Evaluate other chromosomal abnormalities ### Acknowledgements - * MARC cattle operations - * Central Florida Ranch - * Western Nebraska Ranch - * John Keele - * Larry Kuehn - * Warren Snelling - * Milt Thomas and lab personal - * Matt Spangler - * Bonnie Long - * Tammy Sorensen - * Steve Simcox #### Thank You!