Pooling DNA to Investigate Cattle Infertility

Tara McDaneld

USDA/ARS Meat Animal Research Center Clay Center, NE, 68933, USA

Background

- * Reproductive efficiency
 - * Lifetime production of the cow
 - * Important element of cow-calf component of cattle industry
 - * Female becomes a liability in the herd with no calf for producer to market

Objective

* Identify regions of the genome associated with reproductive efficiency in beef cattle

Challenges when evaluating reproductive traits

- * Low heritability (0.10-0.40)
- * Complex trait
 - * Influenced by multiple genes
 - Creates difficulty when identifying genomic regions

Tools for overcoming challenges

Pooling

770 K SNP chip

Steps in creating DNA pools

- * Extract DNA
 - * Tissue
 - * Blood
 - * FTA cards
- * Determine quality and quantity
- * Pool equal amount of each individual
- Properly mix pool to ensure consistency of individuals in pool

Each pool run in duplicate on 770 SNP chip

Cattle populations

- * USMARC population
 - * Genetically diverse populations
 - * British and Continental breeds
 - * 1000 females of low reproductive efficiency
 - * 1000 females of high reproductive efficiency
 - * 10 pools of 100 individuals for each phenotype

Cattle populations

- * Central Florida population
 - * Bos indicus influence
 - * Brangus
 - * Simbrah
 - * Braford
 - * Reproductive records from 2 breeding seasons
 - * Open/open
 - * Open/pregnant
 - * Pregnant/open
 - * Pregnant/pregnant

Additional populations

- * Western Nebraska population
 - * Records from 2007 born heifers
 - * Records for three consecutive breeding seasons
 - Open females are culled after first failure
- * Milt Thomas at NMSU
 - * Records from 7 small populations

MARC population

- * Identified multiple regions across genome associated with reproductive efficiency
 - * BTA 1, 9, 17
 - * Chromosome Y?

Central Florida population * Identified multiple regions across genome

- * Identified multiple regions across genome associated with reproductive efficiency
 - * BTA 5, 8, 9, 14, 17, and 20
 - * Chromosome Y

Y SNP in males and females?

* Only see Y SNP in open and low reproductive pools

Western Nebraska population

- * Identified multiple regions across genome associated with reproductive efficiency
 - * BTA 1, 17, Y

Additional populations

- Identified multiple regions across genome associated with reproductive efficiency
 - * BTA 5, 11, and Y

SNP across the Y chromosome

Why do we see Y SNP in the open females?

- * Can we determine which females that possess the Y SNP?
- * Evaluate individual females that make up open pool
 - * Are all the open females contributing to the Y SNP?

Y chromosome in the pools

- * Evaluate individuals of pools
 - * PCR test specific to Y chromosome
 - * PCR test is used to sex embryos
 - Only positive for males

% pool positive for sexing test	
Brangus	21%
Simbrah	27%
Braford	29%
USMARC	21%

Y SNP in pools

- * Evaluate specific Y SNP on 770 K SNP chip
 - * Developed PCR tests for Y SNP that are significant
 - * We see different patterns in females that are positive for sexing PCR test (3-10% open females positive)
 - * Different fragments of Y chromosome?

What is causing the Y SNP in females?

- * Undetected freemartins?
 - * Females commonly calve on pasture
 - May miss calves that are born twins
 - Reproductive tracts are checked in Central Florida population at prebreeding check
 - * Twins are recorded at USMARC

Freemartins in pools?

- * Use PCR to test for genomic regions of Y in individuals that made up pool
 - * Sexing PCR test

Freemartins in pools?

- * Use PCR to test for Y SNP that are significant
 - * All females that are positive for sexing primers are also positive for Y-SNP tests
 - * Are freemartins the only cause of the Y?

% +	% +
Sexing	Y-SNP
primer	primer
test	test
96%	96%

Conclusions

- * Identified regions of the genome associated with reproductive efficiency
- * Able to replicate these results in additional populations
- * Identified Y SNP in individuals of open pools that may contribute to low reproductive efficiency (approx. 3-29% of the open population)

Current status

- * Evaluate Y-chromosome anomaly further
- * Fine map regions on autosomes identified in current project
- * Evaluate other chromosomal abnormalities

Acknowledgements

- * MARC cattle operations
- * Central Florida Ranch
- * Western Nebraska Ranch
- * John Keele
- * Larry Kuehn
- * Warren Snelling
- * Milt Thomas and lab personal
- * Matt Spangler
- * Bonnie Long
- * Tammy Sorensen
- * Steve Simcox

Thank You!

